2025港资料免费大全,7777788888精准新奥,港彩通免费资料9765下载,王中王493333中特马,二四六天天彩(944CC)资料

广告
Location:Home>>Industry News

Industry News

Proper maintenance preserves performance of gas turbines

Time:13 Jan,2016
A well planned maintenance programme will deliver continued reliability, optimum performance and improved efficiency Skilled engineers combined with expertise in material science and precision engineering can deliver cost effective repairs Active, lock-in thermography uses ultrasonic excitation to help detect flaws in components such as turbine blades Gas turbines form a crucial part of many power generation facilities and provide an efficient and reliable power source that can be brought online as required. Maintaining that facility requires a well planned maintenance program that will deliver continued reliability, optimum performance and efficiency as well as enabling improvements to be implemented. Although the operating principle of a gas turbine is relatively simple, the components involved in producing the energy are highly specialised and operate within very fine tolerances. The original equipment manufacturers (OEMs) provide a complete set of baseline performance data that can be compared to the information collected during each maintenance inspection. Variables such as vibration, pressures, temperatures and output are collated and analysed to produce a serviceability report. Anomalies in the collected data can be assessed and prioritised to ensure that issues can be addressed before they cause significant damage. In this way the availability of the asset is maximised and repairs are completed during scheduled shut-down periods. These also present an opportunity for the operator to install upgrades and improvements that will ensure continued reliability and maintain or even improve performance; all of which can be managed and installed by engineers from Sulzer. High temperature components Gas turbine components are subjected to high temperatures, as well as high stress levels and are exposed to corrosive combustion gases at the same time. Gas turbines have to be fired to highest permissible temperatures to get the best efficiency and the highest output. Fighting degradation of components exposed to high temperature is a continuous challenge. Many gas turbine hot-section components have a limited lifetime. Oxidation, corrosion, material degradation, and thermal cracking are the usual lifetime determining processes. A limited lifetime can be caused by the deterioration of only one detail of a component. A thorough analysis and understanding of the mechanism can lead to accurate pinpointing of that detail and to ways to improve the lifetime of the component. Improvements can be made on existing service-exposed components as well as in new designs. Thermal imaging Inspections of the hot, turbine section are essential and close examination of the individual turbine blades can reveal issues with overheating. Initial inspections by an experienced service engineer using a borescope can reveal more obvious defects but sometimes a more detailed inspection will be required. The use of thermographic equipment to detect heat build-up in bearings and electrical connections uses a passive approach which relies on the thermal radiation of the object being examined. However, an active, lock-in thermography uses ultrasonic excitation to introduce energy into the object, such as a turbine blade, and measures its response. If the normally homogeneous material is damaged, some of the wave energy is absorbed and heat is generated, which can be detected by the thermal imaging camera. This can be executed during a component refurbishment cycle. For turbine components, cooling is very important to extend and protect component life. During the repair of vanes or blades with cooling channels, it must be ensured that all the cooling holes are open. An infrared camera can show at a glance whether cooling holes are blocked or open and images can be recorded as part of the final repair report. Repair technology The sophisticated designs of the advanced technology components used in the hot sector of third generation gas turbines have presented significant challenges to the aftermarket repair sector. Many of the standard repair processes could not be applied to such complex designs. New welding techniques, coating materials, inspection procedures and tooling are necessary to restore components to a safe and serviceable condition. The combustion section includes components such as fuel nozzles, cowl caps, combustion liners, transition pieces and flow sleeves. These require specialist dimensional and non-destructive inspections to be completed before an advanced weld repair method is used to restore the component to its correct dimensions. This can involve parent metal bonding to restore wall thicknesses and repair minor cracks. For the rotating components within the hot section, the advances made in laser welding have allowed many blades, which would have otherwise been scrapped, to be saved and returned to service. Laser welding allows rebuilding of fine details with limited excess material. At the same time, stronger and harder weld filler alloys can be used for demanding applications. Thermal barrier coatings (TBC) can be applied to components to help them withstand the high operating temperatures of the gas turbine. They can be applied to combustion liners, transition pieces and also blades and vanes. More advanced, extreme temperature resistant TBCs have been developed for application on first-stage advanced technology turbine buckets. The search for increased power output using higher turbine inlet temperatures over 1300 °C has led to the application of single-crystal (SX) materials for turbine blading. Without a suitable repair procedure, SX blades must be replaced at every major overhaul after approximately 24,000 operating hours. Based on the investigations and the advanced repair techniques developed by Sulzer, SX blades can be refurbished to an ’as-new’ condition. With the high-end repair technology and the know-how of Sulzer, users of SX blades can give a second life to these components and thereby achieve substantial savings. The number of advanced gas turbines installed is increasing rapidly due to rising fuel costs and environmental regulations. Higher operating temperatures and mechanical stresses are creating the need for the use of advanced technology components and refurbishment processes. In general, refurbishment activities consist of the stripping and reapplication of the coating, the rebuilding of the geometry by welding, and the rejuvenation of the material condition through appropriate heat treatments. Advanced refurbishment procedures also include changes in materials, coatings, or designs, which should reduce the risks of failure or the reoccurrence of damage.

CONTACT US

Tel:86-21-55155796;86-21-63563197
Fax:86-21-63561543
Address:No. 3978, Baoan Highway, Anting Town, Jiading District, Shanghai
Email:wf@wfbearings.com
Website:www.cjcpx.com  www.wfbearings.com

Mobile SiteMobile Site

CopyRight 2017 All Right Reserved Shanghai Junwang Bearing Co.,Ltd
主站蜘蛛池模板: 很想你电视剧免费观看全集完整版高清| 新澳2024大全正版免费资料| 澳门港彩开奖结果号码| 至尊计状元才国语在线观看| 最新电影在线看国语| 开码澳门正版资料免费大全2021| 体育比赛仲裁的职责| 第一滴血4国语版高清免费| 澳门管家婆100%精准天天| 澳门特马好网站2023| 澳门免费开奖网站| 丫丫影视网在线电影| 101影视网科幻电影播放| 澳门今晚买马开奖结果| 体育类省级刊物有哪些| 不需要会员的追剧软件可投屏| 澳门管家婆免费资料期期准| 澳门料大全+正版资料今天的今天开奖的 | 今期鸡猪狗出特开出什么生肖号特 | 马会正版香港资料大全| 2024澳门今晚开奖结果和资料| 2023澳门最精准资料网站| 成人用品店的女老板| 管家婆一肖一码最准资科| 不坑钱的网络游戏| 澳门开奖 开奖结果| 免费观看电视剧黎明之战| 澳门管家婆资料一码一特一| 最新开奖结果开奖香港| 2023澳门资料大全免费49图| 最动听的事电视剧在线观看24集| cctv5体育节目表篮球| 免费电影电视免费看| 大红鹰论坛精选六肖| 澳门王中王免费资料大全香港马会开奖结果 | 巴黎奥运村纸板床终于塌了 | 2024新澳门正版免费资木车 | 澳门六合25663com| 2023年澳门正版资料特| 2023年澳门金牛版免费资料网| 我想和你好好的电视剧在线观看 |